Literatur Review: Penerapan Deep Reinforcement Learning Dalam Business Intelligence
DOI:
https://doi.org/10.58520/jddat.v3i2.58Keywords:
Deep Reinforcement Learning, Business IntelligenceAbstract
Business Intelligence merupakan kombinasi alat, seperti gudang data, pemrosesan analitis online (OLAP), dan dasbor. Gudang data mengumpulkan data yang akurat, bersih, dan terperinci dari berbagai sumber untuk analisis mendalam, sementara pemrosesan analitis online (OLAP) mendukung analisis multidimensi secara real-time dan memungkinkan pengguna menerapkan operasi seperti agregasi, pemfilteran, pengguliran, dan penelusuran. Peneliti mencoba menerapkan Deep Reinforcement Learning (DRL). DRL merupakan teknik yang menjanjikan untuk memecahkan masalah dunia nyata. Hal ini dapat digunakan untuk mengatasi tantangan yang biasa dihadapi dalam tugas pengambilan keputusan berurutan, seperti ketidakpastian dan dimensi variabel. Metode deep learning yang dapat digunakan untuk Business Intelligence antara lain deep neural network (DNN). Model DNN ini menjanjikan kinerja prediksi yang melampaui model pembelajaran mesin tradisional. Adapun temuannya Double Deep Q Learning dapat digunakan untuk meningkatkan kecerdasan bisnis dengan mengoptimalkan pemanfaatan sumber daya dan mengurangi waktu kalkulasi dalam masalah pengemasan persegi panjang skala besar. Ini juga dapat digunakan untuk pemodelan lawan dalam sistem multi-agen, yang memungkinkan identifikasi berbagai pola strategi lawan.
References
P. Reddy e J. Pelletier, The Pentest Method for Business Intelligence, Communication and Electronic Technology (MIPRO), 2022.
J. Vasiliev, M. Stoyanova e E. Stancheva, “Application of business intelligence methods for analyzing a loan dataset,” Informatyka Ekonomiczna = Business Informatics, 2018, Nr 1 (47), pp. 97-106, 2018.
I. S. Nasir, A. . H. Mousa e I. H. Alsammak, “SMUPI-BIS: a synthesis model for users’ perceived impact of business intelligence systems,” The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), 2021.
J. Jeya, R. Ratna e Gangadevi, “Generative AI Boosts Business Productivity,” SAN International Scientific Publications , 2023.
Pathak e S. . D. Sharma, “Applications of Artificial Intelligence (AI) in Marketing Management,” 2022.
D. Mahajan, S. Vatsayan, S. Kumar e P. Dadhich, Decision Strategies and Artificial Intelligence Navigating the Business Landscape, SAN International Scientific Publications, 2023.
M. N. O. Sadiku, O. Fagbohungbe e S. M. Musa, “Artificial Intelligence in Business,” 2020.
B. M. Anisuzzaman, A. . R. Siddique, T. A. Mamun, M. S. J. Jamil e M. S. H. Mukta, “Deep Learning in Mining Business Intelligence,” 2022 IEEE Region 10 Symposium (TENSYMP), 2022.
J. Fombellida, I. Martín-Rubio, S. Torres-Alegre e D. Andina, “Tackling business intelligence with bioinspired deep learning,” Neural Computing and Applications volume 32, pages 13195–13202 , 2020.
Z. Desai, K. Anklesaria e H. Balasubramaniam, “Business Intelligence Visualization Using Deep Learning Based Sentiment Analysis on Amazon Review Data,” 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2021.
A. Pendyala, T. Glasmachers e A. Atamna, “ContainerGym: A Real-World Reinforcement Learning Benchmark for Resource Allocation,” arxiv Cornel University, 2023.
M. Nambiar, S. Ghosh, P. W. M. Ong, Y. E. Chan, Y. M. Bee e P. Krishnaswamy, “Deep Offline Reinforcement Learning for Real-World Treatment Optimization Applications,” arxiv Cornel University , 2023.
E. Yuan, S. Cheng, L. Wang e S. Song, “Solving job shop scheduling problems via deep reinforcement learning,” Applied Soft Computing , 2023.
M. V. K. O. Aditya, C. N. Sujatha, J. Adithya e B. Kiran, 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS), 2023.
Y. Tao e J. Doe, Double Deep Q-Learning in Opponent Modeling, ArXiv, 2022.
C. Luo, W. Yang, Y. Liu e L. Lu, “Application of improved deep Q-learning in two-dimensional rectangular packing problem,” Proceedings Volume 12645, International Conference on Computer, Artificial Intelligence, and Control Engineering (CAICE 2023); , 2023.
Z. Ren e J. Doe, “On the Estimation Bias in Double Q-Learning,” ArXiv, 2022.
X. Siyao, W. Lili, X. Qiang, L. Gaoshang, D. Wannian, Y. Xiao, H. Cheng, S. Liang e Z. Yong, “Improved deep reinforcement learning method and system based on Double DQN,” 2020.
S. R. Mardhatillah, “Urgensi dan Efektifitas Sanksi Administrasi dalam Pengelolaan Limbah Bahan Berbahaya dan Beracun,” Jurnal Hukum IUS QUIA IUSTUM, pp. 486-502, 2016.
M. Bean, Essentials, Laravel 5, Mumbai: PACKT Publishing, 2015.
A. P. Basuki, Konsep dan Implementasi Pemrograman LARAVEL 5, Yogyakata: CV Lokomedia, 2016.
Megawati e T. W. S. Panjaitan, “Perancangan Proses Penyimpanan Limbah Bahan Berbahaya dan,” Jurnal Titra, Vol. 3, No. 2, Juli 2015, pp. 129-134, 2015.
L. Hakim, Yulianto, Andik e D. Willyam, “Produksi Panel Dinding Bangunan Tahan Gempa dan Ramah Lingkungan dari Limbah Bahan Berbahaya dan Beracun Industri Minyak dan Gas,” Jurnal Sains dan Teknologi Lingkungan, Volume 2 Nomor 2 Juni 2010, pp. 97-110, 2010.
K. A. Wardhana, S. Purwati, Saepulloh e T. Rachmanto, “Solidifikasi Deinking Sludge Dan Fly Ash Batu Bara,” Jurnal Selulosa, Vol. 1, No. 2, Desember 2011, pp. 102-109, 2011.
L. Kevin e J. Andjarwirawan, “Pembuatan Aplikasi Point of Sales dan Online Shop Berbasis Web Menggunakan Framework Laravel,” Jurnal INFRA, Vol 5 No 1 2017, 2017.
S. Susanti, E. Junianto e R. Rachman, “Implementasi Framework Laravel Pada Aplikasi Pengolah Nilai Akademik Berbasis Web,” JURNAL INFORMATIKA, Vol.4 No.1 April 2017, pp. 108-117, 2017.
D. R. N. ,. N. S. I. Trina Ayuni, “Strategi Pengelolaan Limbah Elektronik Melalui Pengembangan Infrastruktur Ramah Lingkungan,” Risalah Kebijakan Pertanian dan Lingkungan Vol. 3 No. 1, April 2016, pp. 78-86, 2016.
A. Dennis, B. H. Wixom e R. M. Roth, SYSTEM ANALYSIS AND DESIGN, United States of America: John Wiley & Sons, Inc., 2012.
Iswanto, Sudarmadji, E. T. Wahyuni e A. H. Sutomo, “Generation of Household Hazardous Solid Waste and Potential Impacts on Environmental Health,” MANUSIA DAN LINGKUNGAN, Vol. 23, No.2, Juli 2016, pp. 179-188, 2016.
K. Septiningrum e H. Hardiani, “Aplikasi Konsorsium Mikroba Untuk Meremediasi Tanah Terkontaminasi Timbal Dari Limbah Proses Deinking Industri Kertas,” Jurnal Selulosa, Vol. 1, No. 2, Desember 2011, pp. 89 - 101, 2011.
H. Hardiani, T. Kardiansyah e S. Sugesty, “ Bioremediasi Logam Timbal (Pb) Dalam Tanah Terkontaminasi Limbah Sludge Industri Kertas Proses Deinking,” Jurnal Selulosa, Vol. 1, No. 1, Juni 2011, pp. 31 - 41, 2011.
N. Coutoa, V. Silvaa, E. Monteirob e A. Rouboa, “Hazardous waste management in Portugal: An overview,” em TerraGreen13 International Conference, 2013.
M. J. Krause e T. G. Townsend, “Hazardous waste status of discarded electronic cigarettes,” Waste Management , ELSEVIER, pp. 57-62, 2015.
S. H. SOh, M. K. Jeong, H.-C. Kim e J. Park, “Applying Reinforcement Learning for Enhanced Cybersecurity against Adversarial Simulation,” Journals Sensors Volume 23 Issue 6 10.3390/s23063000rs , 2023.
P. R. Wurman, P. Stone e M. Spranger, “Challenges and Opportunities of Applying Reinforcement Learning to Autonomous Racing,” IEEE Intelligent Systems ( Volume: 37, Issue: 3, 01 May-June 2022), 2022.
R. Sasso, M. Sabatelli e M. A. Wiering, “Multi-Source Transfer Learning for Deep Model-Based Reinforcement Learning,” arxiv Cornell University, 2022.
I. Ilahi, M. Usama, J. Qadir, M. U. Janjua, A. Al-Fuqaha, D. T. Hoang e D. Niyato, “Challenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning,” IEEE Transactions on Artificial Intelligence ( Volume: 3, Issue: 2, April 2022) , 2022.
W. Chen, “Open Problems and Modern Solutions for Deep Reinforcement Learning,” arxiv Cornell University , 2023.
D. V. Hooren, “DRLNPS: A deep reinforcement learning network path switching solution,” International Journal of Communication Systems , 2022.
F. Giannini, G. Franze, F. Pupo e G. Fortino, “Autonomous Vehicles in Smart Cities: a Deep Reinforcement Learning Solution,” 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2022.
D. Hao, “Curriculum Generation and Sequencing for Deep Reinforcement Learning in StarCraft II,” ACSW 2022, February 14–18, 2022, , 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Desain Dan Analisis Teknologi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.